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Two major themes in the physics of condensed matter are quantum
critical phenomena and unconventional superconductivity. These
usually occur in the context of competing interactions in systems
of strongly correlated electrons. All this interesting physics comes
together in the behavior of the recently discovered iron pnictide
compounds that have generated enormous interest because of
their moderately high-temperature superconductivity. The ubiquity
of antiferromagnetic ordering in their phase diagrams naturally
raises the question of the relevance of magnetic quantum criticality,
but the answer remains uncertain both theoretically and experi-
mentally. Here, we show that the undoped iron pnictides feature a
unique type of magnetic quantum critical point, which results from
a competition between electronic localization and itinerancy. Our
theory provides a mechanism to understand the experimentally
observed variation of the ordered moment among the undoped
iron pnictides. We suggest P substitution for As in the undoped
iron pnictides as a means to access this example of magnetic quan-
tum criticality in an unmasked fashion. Our findings point to the
iron pnictides as a much-needed setting for quantum criticality, one
that offers a unique set of control parameters.
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T he recent discovery of copper-free high-Tc superconductors
has triggered intense interest in the homologous iron pnic-

tides. The parent compound of the lanthanum-iron oxyarsenide,
LaOFeAs (1), exhibits a tetragonal-orthorhombic structural tran-
sition and long-range antiferromagnetic order (2). Electron dop-
ing, via fluorine substitution for oxygen, suppresses both and
induces superconductivity. Other families of the arsenide com-
pounds show a similar interplay among structure, antiferromag-
netism, and superconductivity. These include the oxyarsenide
systems obtained through replacing lanthanum by other rare-
earth elements such as Ce, Pr, Nd, Sm, and Gd (3–6), as
well as oxygen-free arsenides, such as BaFe2As2 (7) and
SrFe2As2 (8).

Quantum Criticality in the Pnictides
The existence of the antiferromagnetic state naturally raises the
possibility of carrier-doping-induced quantum phase transitions
in the iron pnictides (9–11), but the situation is not yet certain.
Theoretically, the evolution of the Fermi surface as a function of
carrier doping is not yet well understood, and this limits the study
of quantum criticality. Experimentally, earlier measurements in
LaO1−xFxFeAs (1) and SmO1−xFxFeAs (12) show a moderate
suppression of the magnetic/structural transition temperature(s)
as x is increased; beyond x of about ∼7%, the transitions are
interrupted by superconductivity. Further experiments have led
to conflicting reports for the first-order or second-order nature
of the carrier-induced zero-temperature magnetic and structural
phase transitions (13–15).

We propose that an alternative to a possible doping-induced
quantum phase transition is one that is accessed by changing the
relative strength of electron–electron correlations. Thus, we sug-
gest that the iron pnictides may exhibit an example and setting for
quantum criticality. Our approach is motivated by the phenome-
nological and theoretical evidence that the parent iron pnictide is a

“bad metal” (9, 16, 17). Accordingly, we formulate our considera-
tions in terms of an incipient Mott insulator: the electron–electron
interactions lie close to, but do not exceed the critical value for
the insulating state. Within this picture, the electronic excitations
comprise an incoherent part away from the Fermi energy, and
a coherent part in its vicinity. The incoherent electronic excita-
tions are described in terms of localized Fe magnetic moments,
with frustrating superexchange interactions. The latter have been
discussed earlier by two of us (9) and others (18). This division
of the electron spectrum is a simple and convenient way of ana-
lyzing the complex behavior of a bad metal close to the Mott
transition, whose spectrum exhibits incipient upper and lower
Hubbard bands and a coherent quasi-particle peak at the Fermi
energy (19).

The coupling of the local moments to the coherent electronic
excitations competes against the magnetic ordering. A magnetic
quantum critical point arises when the spectral weight of the
coherent electronic excitations is increased to some threshold
value.

The Electron Spectrum
The incoherent and coherent parts of the single-electron spec-
tral function are illustrated schematically in Fig. 1. The cen-
tral peak describes the coherent itinerant carriers; these are the
electronic excitations that are responsible for a Drude optical
response and that are adiabatically connected to their nonin-
teracting counterparts. The side peaks describe the incoherent
excitations, vestiges of the lower and upper Hubbard bands associ-
ated with a Mott insulator that would arise if the electron–electron
interactions were larger than the Mott localization threshold.
Each of the three peaks may in general have a complex struc-
ture due to the multiorbital nature of the iron pnictides. The
decomposition of the electronic spectral weight into coherent and
incoherent parts is natural for a metal near a Mott transition
(19, 20).

We use w to denote the percentage of the spectral weight lying
in the coherent part of the spectrum. A relatively small w may
be inferred for the iron pnictides, because the Drude weight seen
in the optical conductivity (21–23) is very small (on the order of
5% of the total spectral weight integrated to ≈2 eV). A small
w corresponds to an interaction strength sufficiently large that
the system is close to the Mott transition, albeit on the metallic
side; this implies a large electron–electron scattering rate, con-
sistent with the observed large electrical resistivity (on the order
of 0.5 m� · cm for single crystals and 5 m� · cm for polycrystals)
at room temperature. In terms of electrical conduction, the iron
pnictides are similar to, e.g., V2O3, a bad metal (with a room tem-
perature resistivity (24) of about 0.5 m� · cm) that is known to
be on the verge of a Mott transition, and is very different from,
e.g., Cr, a simple metal [with a room temperature resistivity (25)
of ≈0.01 m� · cm] which orders into a spin-density-wave ground
state.
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Fig. 1. Single-electron spectral function as the sum of coherent and incoher-
ent parts. The single-electron density of states (DOS) is plotted against energy
(E); EF is the Fermi energy. Each peak may contain additional structure due
to the multiorbital nature of the iron pnictides. The percentage of the total
spectral weight that belongs to the coherent part is defined as w, which goes
from 1 when the interaction is absent, to 0 when the interaction reaches and
goes beyond the Mott-transition threshold.

Effective Hamiltonian
To study the magnetism, the incoherent spectrum is naturally
described in terms of localized magnetic moments, leading to a
matrix J1–J2 model (9):

HJ =
∑
〈ij〉

Jαβ

1 si,α · sj,β +
∑
〈〈ij〉〉

Jαβ

2 si,α · sj,β

+ JH

∑
i,α �=β

si,α · si,β . [1]

Here, J1 and J2 label the superexchange interactions between
two nearest-neighbor (n.n., 〈ij〉) and next-nearest-neighbor (n.n.n.,
〈〈ij〉〉) Fe sites, respectively. Both are matrices in the orbital basis,
α, β with these indices summed when repeated. JH is the Hund’s
coupling.

Eq. 1 reflects the projection of the full interacting problem to the
low-energy subspace when the system is a Mott insulator (w = 0)
and the single-electron excitations have only the incoherent part.
When the single-electron excitations also contain the coherent
part (w being nonzero but small, see Fig. 1), these coherent elec-
tronic excitations must be included in the low-energy subspace as
well.

We will use the projection procedure of ref. 26 to construct
the effective low-energy Hamiltonian. We denote by dcoh

kασ the
d-electron operator projected to the coherent part of the elec-
tronic states near the Fermi energy, and define the incoherent part
through dkασ ≡ dcoh

kασ +dincoh
kασ . Therefore, unlike the full d-electron

operator, dcoh
kασ does not satisfy the fermion anticommutation rule.

Indeed, its spectral function integrated over frequency defines w.
We therefore introduce ckασ = (1/

√
w)dcoh

kασ , so that ckασ has a
total spectral weight of 1 and satisfies {ckασ , c†

kασ } = 1.
We then have the effective low-energy Hamiltonian terms for

the coherent itinerant carriers (Hc) and for their mixing with the
local moments (Hm):

Hc =
∑
k,α,σ

εkασ c†
kασ ckασ = w

∑
k,α,σ

Ekασ c†
kασ ckασ

Hm =
∑

kqαβγ

gk,qαβγ c†
k+qασ

τ σσ ′
2

ckβσ ′ · sqγ

= w
∑

kqαβγ

Gk,qαβγ c†
k+qασ

τ σσ ′
2

ckβσ ′ · sqγ . [2]

Here, τ labels the three Pauli matrices. In the projection proce-
dure leading to Eq. 2, we keep dcoh

kασ as part of the low-energy
degrees of freedom; the prefactor w in the first equation comes
from the rescaling ckασ = (1/

√
w)dcoh

kασ and Ekασ is therefore the
conduction–electron dispersion at w = 1. At the same time, we
integrate out the high-energy states involved in dincoh

kασ . To the lead-
ing order in w, this procedure is carried out at the w = 0 point
which is taken to have a full gap (26); as a result, the effective
coupling Gkqαβγ is of order w0. Beyond the leading order in w, the
coupling constants will acquire further corrections. The compu-
tation of these corrections is difficult, since, at those orders, the
spectrum becomes continuous from the coherent to incoherent
part (Fig. 1); it is left for future work. Still, our leading-order analy-
sis captures the form of the low-energy effective Hamiltonian,
which is

Heff = HJ + Hc + Hm. [3]

J1–J2 Competition
The superexchange interactions in the iron pnictides contain n.n.
and n.n.n. terms because of the specific relative locations of the
ligand As atoms and Fe atoms (9, 18, 27). To assess the tunabil-
ity of J1 and J2, we consider an oversimplified case, illustrated in
Fig. 2. Here, only one Fe 3d orbital is considered. We assume
that the 3d orbital on each of the 4 corners of a square plaquette
has an identical hybridization matrix element, V , with one As 4p
orbital located above the center of the plaquette. The superex-
change interaction is found to be hJ ∝ ∑

r[
∑

� s(r)]2, where r
labels a plaquette in the 2D square lattice and the summation

∑
�

is over the 4 Fe sites of a plaquette. For classical spins, this is the
canonical case of magnetic frustration: all states with

∑
� s(r) = 0

are degenerate. Written in the form of Eq. 1, this corresponds to
J2 = J1/2. This discussion is instructive for the understanding of
the realistic exchange interactions in the iron pnictides. Several
aspects are neglected in the simplified analysis given above. First,
multiple 3d orbitals are important, and the hybridization is orbital-
sensitive. Both the J1 and J2 interactions are therefore matrices.
Second, the real band structures must be described by more com-
plex d-p, p-p, and d-d tight-binding parameters. Both features spoil
the elementary J2 = J1/2 relationship. Still, the simple considera-
tions given above suggest that the overall strength of J2 and J1, i.e.,
the largest eigenvalues of the J2 and J1 matrices, are comparable
with each other. Detailed analysis of the matrix elements indicates
that there are more entries in the J2 matrix than in the J1 matrix
that correspond to the dominating antiferromagnetic component,
and that the overall magnitude (the largest eigenvalue) of the J2
matrix will be somewhat larger than half of that of the J1 matrix.
This conclusion is supported by the fitting of the ab initio results

Fig. 2. A square plaquette of Fe ions, with an As ion sitting above or
below the center of the plaquette. The hybridization term is written as
hV = ∑

r V [p†
σ (r)

∑
� dσ (r) + h.c.], and the energy levels for the Fe 3d orbital

and As 4p orbital are εd and εp, respectively. The resulting superexchange
interaction is hJ = [2V 4/(εp − εd )3] ∑

r [
∑

� s(r)]2.
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of the ground-state energies for various magnetic configurations
in terms of J1 and J2 parameters in the (nonmatrix) Heisenberg
form (18, 27). This range of J2/J1 leads to a two-sublattice collinear
antiferromagnetic ground state, consistent with the results of the
neutron scattering experiment (2).

On the one hand, the above argument implies that the magnetic
frustration effect is strong, and can provide significant quantum
fluctuations leading to a reduced ordered moment. On the other
hand, it suggests that the degree to which J2/J1 can be tuned in
practice could be limited.

Magnetic Quantum Critical Point
The order parameter for the two-sublattice antiferromagnet
appropriate for J2/J1 > 1/2 is the staggered magnetization, m,
at wave vector Q = (π , 0). The effective theory for the HJ term
alone corresponds to a φ4 theory whose action is of the form
S ∼ rφ2 + uφ4. The coupling to the coherent quasi-particles is
given by the Hm term of Eq. 2; it causes a shift of the tuning para-
meter r and also introduces a damping term. These contributions
to the r coefficient are given by:


r + i� =
∑

k,α,β,γ

g2
kqαβγ a2

γ

f (εk+q,α) − f (εk,β)
iωn − (εk+q,α − εk,β)

. [4]

Here, f (ε) is the Fermi–Dirac distribution function and aγ is an
orbital-dependent coefficient:

∑
γ aγ sγ appears in the order para-

meter for the (π , 0) antiferromagnet. Note that both gk,qαβγ and
εk,β , εk+q,α are linear order in w. We can infer from Eq. 4 that the
damping term is of the order w0 at low energies: for |ωn| � wW (W
is the bandwidth), � = γ |ωn|, where γ is, to leading order in w, the
constant value associated with the couplings and density of states
of the w = 1 case. Note that γ is nonzero because, for the parent
compounds, Q connects the hole pockets near the � point of the
Brillouin zone (BZ) and the electron pockets near the M points (in
the unfolded BZ notation). At the same time, γ does not diverge
since the nesting is not perfect. The existence of the linear in ω
damping term is in contrast to the doped case, where Q no longer
connects the hole- and electron-Fermi surfaces (11). Importantly,
we can also infer from Eq. 4 that the leading frequency- and
temperature-independent term 
r = wAQ is linear in w, with
AQ = ∑

k,α,β,γ G2
kqαβγ a2

γ [(EF − Ek+Q) − (EF − Ek)]/(Ek,β −
Ek+Q,α) (where  is the Heaviside function) is independent of w,
and positive.

The low-energy Ginzburg–Landau theory then takes the form,

S =
∫

dq
∫

dω[r(w) + c(q − Q)2 + ω2 + γ |ω|][m(q, ω)]2

+ u
4∏

i=1

∫
dqi

∫
dωi δ

(∑
i

qi

)
δ

(∑
i

ωi

)
[m]4 + . . . , [5]

where r(w) = r(w = 0) + wAQ. r(w = 0) is negative, placing the
system at w = 0 to be antiferromagnetically ordered. The linear
in w shift, wAQ, causes r(w) to vanish at a w = wc, leading to
a quantum critical point. In terms of the external control para-
meter δ, shown in Fig. 3, w = wc defines δ = δc. The φ4 theory
describes a z = 2 (where z is the dynamical exponent) antiferro-
magnetic quantum phase transition, which is generically second
order.

The O(3) vector m, corresponding to the (π , 0) order, is accom-
panied by another O(3) vector, m′ that describes the (0, π) order.
These two vector order parameters accommodate a compos-
ite scalar, m · m′, the order parameter for an Ising transition
(10, 11, 28). In turn, the Ginzburg–Landau action, Eq. 5, contains a
quartic coupling ũ(m ·m′)2 [as well as u′m2(m′)2]. In the z = 2 case
here, the φ4 theory is at effective dimension d+z = 4. At the QCP
of the O(3) transition, the ũ quartic coupling term is marginally
relevant in the renormalization group sense. The T = 0 transition

Fig. 3. Magnetic quantum phase transition in the parent compounds of
the iron pnictides. The blue solid/black dashed lines represent the mag-
netic/structural transitions, respectively. δ is a nonthermal control parameter:
increasing δ enhances the spectral weight in the coherent part of the single-
electron excitations (Fig. 1). The QCP, at δ = δc , separates a two-sublattice
collinear AF ground state from a paramagnetic one. A specific example for
δ is the concentration of P doping for As: a parent iron pnictide with As is
an antiferromagnetic metal, whereas its counterpart with P is nonmagnetic;
the possibility that the latter is superconducting is not shown in the phase
diagram.

could therefore either be turned to first order, or be split into two
continuous transitions, one for the Ising transition, whose scalar
order parameter is �m · �m′ (which corresponds to the structural dis-
tortion when it is coupled to some structural degrees of freedom),
the other is for the O(3) magnetic one. Either effect is expected
to be weak, because of the marginal nature of the coupling.

The magnetic quantum criticality will strongly contribute to
the electronic and magnetic properties in the quantum critical
regime. We note that since d = z = 2, there are (marginal)
logarithmic corrections to simple Gaussian critical behavior (29).
Following discussions in, e.g., ref. 29, we expect that the specific-
heat coefficient will be C/T ∼ ln(1/T), the NMR relaxation rate
1/T1 ∝ const, and (in the presence of disorder scattering that
smears the Fermi surface) the resistivity ρ ∝ T .

Tuning Parameter and Variation of Magnetic Order
The parent materials of the different iron arsenides will have
different internal pressures and “c/a” ratios, and will correspond-
ingly have different ratios of the electron–electron interaction to
the effective bandwidth. According to our theory, the resulting
variation of the coherent spectral weight w will, in turn, tune the
control parameter r in Eq. 5, and the ordered moment will change
accordingly across the different compounds.

Neutron scattering experiments have indeed found that the
ordered moment does vary across the parent arsenides. The
moment associated with Fe-ordering at low temperatures is ≈0.2-
0.3 μB/Fe in NdOFeAs (30, 31), 0.4 μB/Fe in LaOFeAs (2), 0.5
μB/Fe in PrOFeAs (32, 33), and 0.8-1.0 μB/Fe in CeOFeAs (15),
BaFe2As2 (34), and SrFe2As2 (35).

As1−δPδ Series of the Parent Iron Pnictides
Because the c-lattice constant in LaOFeP is smaller than that in
LaOFeAs, these considerations suggest that the coherent-electron
spectral weight of the iron phosphides is larger than that of the
iron arsenides. A consequence is that, in contrast to the arsenide,
the phosphide does not have a magnetic transition (36). We then
propose that a parent iron pnictide series created by P doping of
As presents a means to unmask a magnetic quantum critical point.
Our purpose is better served the weaker the superconductivity is
in the P end material. LaOFeAs1−δPδ is promising, since LaOFeP
is a weak superconductor whose Tc is only a few Kelvin or may
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even vanish (37–39). CeOFeAs1−δPδ may also be of interest in
this context. While CeOFeAs (15) is antiferromagnetic, CeOFeP
is a paramagnetic metal (40). We remark in passing that P-doping
for As is more advantageous than external pressure, because the
latter is known to cause a volume collapse (41). It would be inter-
esting to search for a substitution for As such that w could be
reduced, leading toward to the Mott insulating state.

To understand the tuning of the microscopic electronic parame-
ters, we have carried out density-functional-theory (DFT) calcula-
tions on both CeOFeAs and CeOFeP for comparison. We find that
the d-p hybridization matrix is larger in CeOFeP than in CeOFeAs.
This is consistent with the qualitative consideration that, com-
pared with CeOFeAs, CeOFeP has a higher internal pressure and,
hence, a higher kinetic energy and smaller ratio of the interaction
to the bandwidth, thus a larger coherent weight w.

Comparison with DFT Studies
We have considered the mechanism for quantum fluctuations
having in mind the proximity to the Mott limit, where the instan-
taneous atomic moment is large (a few μB/Fe) to begin with.
Most DFT calculations have shown that the ordered moment in
the antiferromagnetic ground state is large, of the order 2 μB/Fe.
Moreover, such a large ordered moment was found within DFT
not only for the parent iron pnictides, but also for their doped
counterparts.

Since DFT calculations neglect quantum fluctuations, we are
tempted to interpret the large DFT-calculated moment as essen-
tially the instantaneous atomic moment. Quantum fluctuations
will then lead to a reduced ordered moment in the true ground
state. The J1–J2 competition together with the coupling of the local
moments to the coherent itinerant electronic excitations arising

naturally in the Mott-proximity picture we have described is just
such a mechanism for quantum fluctuations.

Discussion
We have developed a framework to describe the quantum mag-
netism of the iron pnictides, appropriate for electron–electron
interactions that are of an intermediate strength to place the mate-
rials at the delicate boundary between itinerancy and localization.
Our description takes into account the interplay between the itin-
erant and local-moment aspects, which are naturally associated
with the interaction-induced coherent and incoherent parts of
the electronic excitations. Enhancement of the spectral weight
associated with the coherent electronic excitations weakens the
magnetic order, and induces a magnetic quantum critical point.
Our characterization of the magnetic excitations is important not
only for the understanding of the existing and future experiments
in the normal state, but also for the microscopic understand-
ing of high-temperature superconductivity in the iron pnictides
and related metallic systems close to a Mott transition. In addi-
tion, realization of a magnetic quantum critical point in the iron
pnictides provides a new setting to explore some of the rich com-
plexities (42, 43) of quantum criticality; this is much needed since
quantum critical points have so far been explicitly observed only
in a very small number of materials.
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